
J Math Chem (2013) 51:1300–1309
DOI 10.1007/s10910-013-0146-7

ORIGINAL PAPER

Leading order asymptotics in the Goldbeter–Koshland
switch

Guido Dell’Acqua

Received: 23 August 2012 / Accepted: 20 January 2013 / Published online: 8 February 2013
© Springer Science+Business Media New York 2013

Abstract An asymptotic analysis at leading order of the Goldbeter–Koshland switch,
the simplest futile cycle, is carried out in detail. After a nondimensionalization of the
problem, we find the leading order uniform expansions of the reactants, identifying the
proper time scales in a total setting. Comparison with numerical integration confirms
the goodness of our analysis.
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1 Introduction

One of the main phenomena characterizing living organisms is the capability of
responding to internal and external stimuli, such as depletion of nutrients, variation
of hormone levels, reception of sensory signals. In general, this activity is carried out
with a cascade of events, whose building block is the covalent modification of proteins.
This process can be summarized in the scheme below

M + E
k11
�

k−11

M − E = C1
k12→ Mp + E, (1)

Mp + F
k21
�

k−21

Mp − F = C2
k22→ M + F, (2)

which describes, for example, the cycle of phosphorylation and dephosphorylation
of an unmodified substrate M into a modified form Mp, where the interconversion
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of the forms is catalyzed by two converter enzymes, E and F . This system, called
the Goldbeter–Koshland (GK) switch, was considered in the pioneering work [6]
and modelled in terms of Michaelis–Menten (MM) kinetics; assuming Michaelis–
Menten conditions (i.e., excess of substrates with respect to enzymes and negligible
intermediate complexes) the authors derived reduced equations for the time evolution
of the reactants and a closed form for the steady states. But when MM conditions are
not valid, their analysis obviously ceases to be feasible.

At the end of last century Borghans et al. [1] introduced, with a simple change of
variable, the total quasi-steady-state approximation (tQSSA) for a single MM reaction,
that has shown to be the more adequate do describe regimes where MM kinetics (that
is, mass action kinetics) do not occur under MM conditions. In [3] the authors showed
that the tQSSA is the leading order outer solution of a particular asymptotic expansion.
Recently the tQSSA has been applied to networks of coupled enzymatic reactions [4]
and also specifically to the GK module [2,9]. Anyway, none of these works use singular
perturbation theory to catch the relevant time scales and correct approximations. This
is exactly the aim of this paper. A similar approach, in a geometric framework, can be
found in [7], even if the authors make an oversimplification of the kinetic parameters.

In this paper the tQSSA has been exploited as a tool for a proper nondimensional-
ization and, more importantly, we have found, in our leading order outer expansions,
the tQSSA results of [9]. The paper is organized as follows. In Sect. 2 we write the
equations governing the dynamics of the system, then we rewrite them in a total set-
ting and we find the proper nondimensionalization. In Sect. 3 we find an appropriate
small parameter, expand the inner and the outer solution in function of that parameter
and we write the leading order uniform expansion. Finally, in Sect. 4 we compare our
approximations with the numerical integration of the full system and we summarize
our results and the future work.

2 Model equations and nondimensionalization

Using the law of mass action (1) can be translated into the following system of (dimen-
sional) differential equations (here we use the same symbol to denote both the reactant
and its concentration):

d M

dt
= −k11 M E + k−11C1 + k22C2

d Mp

dt
= −k21 Mp F + k−21C2 + k12C1

dC1

dt
= k11 M E − (k−11 + k12)C1 (3)

dC2

dt
= k21 Mp F − (k−21 + k22)C2

d E

dt
= −k11 M E + (k−11 + k12)C1

d F

dt
= −k21 Mp F + (k−21 + k22)C2
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with initial conditions

M(0) = MT , Mp(0) = 0, C1(0) = 0, C2(0) = 0. (4)

Summing up equations, it is easily seen that the system admits three conservation
laws:

M + Mp + C1 + C2 = MT , (5)

E + C1 = ET , F + C2 = FT . (6)

Introducing as in [9] the total substrates M = M + C1 and Mp = Mp + C2 and
using (6), we can write

d M

dt
= −k12C1 + k22C2 = −d M p

dt
dC1

dt
= k11

[
C2

1 − (ET + M + K 1
M )C1 + ET M

]
(7)

dC2

dt
= k21

[
C2

2 − (FT + M p + K 2
M )C2 + FT M p

]

where K i
M = k−i1+ki2

ki1
, i = 1, 2 are the Michaelis constants of reactions (1–2). It

follows that (5) is converted in

M + M p = MT . (8)

Proceeding as in [3], if we adopt the change of variables

M = α1m, M p = α2m p, C1 = β1c1, C2 = β2c2, t = γ τ (9)

we find that Eqs. (7) become:

α1

γ

dm

dτ
= −k12β1c1 + k22β2c2 = −α2

γ

dm p

dτ

β1

γ

dc1

dτ
= k11

[
β2

1 c2
1 − (ET + K 1

M + α1m)β1c1 + ET α1m
]

(10)

β2

γ

dc2

dτ
= k21

[
β2

2 c2
2 − (FT + K 2

M + α2m p)β2c2 + FT α2m p

]
.

Let us first scale the inner variables, since they are supplemented by the initial
conditions. It follows immediately that α1 = α2 = MT , while to ensure that all
terms on the right hand side of the second and third equations of (10) are of the same
magnitude, neglecting the quadratic terms and setting for scaling purposes m = m p =
c1 = c2 = 1, we find that

β1 = MT ET

MT + ET + K 1
M
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and

β2 = MT FT

MT + FT + K 2
M

.

To find γ , the usual procedure would be to require that the left side of the second (or
third) equation of (10) have same magnitude of the right side. However, this would in
general lead to two different values of γ ; we choose therefore to take the arithmetic
mean of such values, i.e.

γ = 1

2

(
1

k11(MT + ET + K 1
M )

+ 1

k21(MT + FT + K 2
M )

)
(11)

The value of tc = γ is, for the Golbether–Koshland switch, the fast time scale of
complexes formation, corresponding to the analogous one found in [1,3,5] for the
single reaction case.

3 Asymptotic expansions

Substituting in (10) the values of α1, α2, β1, β2 and γ we have the inner equations:

dm

dτ
= ε (η1c2 − η2c1) = −dm p

dτ

dc1

dτ
= A

[
σ1c2

1 − MT m + ET + K 1
M

MT + ET + K 1
M

c1 + m

]
(12)

dc2

dτ
= B

[
σ2c2

2 − MT (1 − m) + FT + K 2
M

MT + FT + K 2
M

c2 + m p

]
.

with initial conditions m(0) = 1, m p(0) = c1(0) = c2(0) = 0 and where all the
constants appearing in (12) are defined as follows:

ε = ET FT
[
k11(MT + ET + K 1

M ) + k21(MT + FT + K 2
M )

]

2
[
(MT + ET + K 1

M )(MT + FT + K 2
M )

]2 ,

η1 = K2
MT + ET + K 1

M

v1
max

, η2 = K1
MT + FT + K 2

M

v2
max

,

A = 1

2

(
1 + k11

k21
· MT + ET + K 1

M

MT + FT + K 2
M

)
, B = 1

2

(
1 + k21

k11
· MT + FT + K 2

M

MT + ET + K 1
M

)
,

σ1 = MT ET

(MT + ET + K 1
M )2

, σ2 = MT FT

(MT + FT + K 2
M )2

where K1 = k12
k11

, K2 = k22
k21

, v1
max and v2

max are the Van Slyke–Cullen costants and the
maximal velocities of reactions (1–2).
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Let us expand the solutions of (12) in the form

m = μ0 + εμ1 + o(ε), m p = μp0 + εμp1 + o(ε), c1 = Γ1,0 + εΓ1,1 + o(ε),

c2 = Γ2,0 + εΓ2,1 + o(ε),

Substituting in (12) we find at leading order that μ0 = const. = 1 and μp0(0) =
const. = 0, while Γ1,0 and Γ2,0 are given by

dΓ1,0

dτ
= A

(
σ1Γ

2
1,0 − Γ1,0 + 1

)

dΓ2,0

dτ
= B

(
σ2Γ

2
2,0 − FT + K 2

M

MT + FT + K 2
M

Γ2,0

)
(13)

whose solutions, complying with (4), is easily found as Γ2,0 ≡ 0 and

Γ1,0 = Φ+Φ−(exp(A
√

1 − 4σ1τ) − 1)

Φ+ exp(A
√

1 − 4σ1τ) − Φ− , (14)

where

Φ± = 1 ± √
1 − 4σ1

2σ1

Note that

lim
τ→∞ Γ1,0(τ ) = Φ−. (15)

Summarizing, we have that the (dimensional) leading order inner expansions of the
reactants are:

Minn = MT

{
1 − ET Φ+Φ−[exp(A

√
1 − 4σ1

t
tc
) − 1]

(MT + ET + K 1
M )[Φ+ exp(A

√
1 − 4σ1

t
tc
) − Φ−]

}
,

Minn
p ≡ 0, (16)

Cinn
1 =

{
MT ET Φ+�−[exp(A

√
1 − 4σ1

t
tc
) − 1]

(MT + ET + K 1
M )[Φ+ exp(A

√
1 − 4σ1

t
tc
) − Φ−]

}
,

Cinn
2 ≡ 0.

Let us look, now, for the outer solutions of (10). Only the timescale needs to be
changed, therefore we choose as new timescale the value ts = tc

ε
. Note that proceeding

in this way the slow time scale becomes:

ts = γ

ε
= (MT + ET + K 1

M )(MT + FT + K 2
M )

v1
maxv

2
max
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In other words, the slow time scale of the Goldbeter–Koshland switch is the product
of the slow time scales of every single reaction, found in [3].
With this choice (10) become

dm

dτ
= (η1c2 − η2c1) = −dm p

dτ

ε
dc1

dτ
= A

[
σ1c2

1 − MT m + ET + K 1
M

MT + ET + K 1
M

c1 + m

]
(17)

ε
dc2

dτ
= B

[
σ2c2

2 − MT m p + FT + K 2
M

MT + FT + K 2
M

c2 + m p

]
.

Let us expand the solutions of (17) in the form

m = m0 + εm1 + o(ε), m p = m p0 + εm p1 + o(ε), c1 = c1,0 + εc1,1 + o(ε),

c2 = c2,0 + εc2,1 + o(ε)

Substituting in (17) we find at leading order that

dm0

dτ
= (

η1c2,0 − η2c1,0
) = dm p0

dτ
,

σ1c2
1,0 − MT m0 + ET + K 1

M

MT + ET + K 1
M

c1,0 + m0 = 0, (18)

σ2c2
2,0 − MT m p0 + FT + K 2

M

MT + FT + K 2
M

c2,0 + m p0 = 0.

which correspond to the equations obtained in the tQSSA for the Goldbeter–Koshland
switch [9].
The second and third equations are algebraic in c1,0 and c2,0 with solutions

c±
1,0 =

MT m0 + ET + K 1
M ±

√
(MT m0 + ET + K 1

M )2 − 4MT ET m0

2β1

c±
2,0 = MT m p0 + FT + K 2

M ±
√[

MT m p0 + FT + K 2
M

]2 − 4MT FT m p0

2β2
(19)

It is easy to see that only c−
1,0 and c−

2,0 are biologically significant; then the first equation
of (18) becomes

dm0

dτ
=

(
η1c−

2,0 − η2c−
1,0

)
= −dm p0

dτ
. (20)

with initial conditions given by the matching conditions m0(0) = limτ→∞μ0(τ ) ≡ 1
(and m p0(0) = 0) for the leading order terms in the inner and outer expansions
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of m (and of m p); thus we have automatically that c1,0(0) = c−
1,0(0) = Φ− and

c2,0(0) = c−
2,0(0) = 0. Therefore, we have that the (dimensional) leading order outer

expansions of the reactants are:

Mout = MT

(
m0

(
t

ts

)
− ET

MT + ET + K 1
M

c−
1,0

(
t

ts

))
,

Mout
p = MT

(
m p0

(
t

ts

)
− FT

MT + FT + K 2
M

c−
2,0

(
t

ts

))
, (21)

Cout
1 = MT ET

MT + ET + K 1
M

c−
1,0

(
t

ts

)
,

Cout
2 = MT FT

MT + FT + K 2
M

c−
2,0

(
t

ts

)
,

Following [8] we are now in position to write the (dimensional) leading order
uniform expansions, adding the inner and the outer solutions and subtracting their
common part, i. e.,

Mun = MT

[
m0

(
t

ts

)
− ET

MT + ET + K 1
M

(
Γ1,0

(
t

tc

)
+ c−

1,0

(
t

ts

)
− Φ−

)]
,

Mun
p = MT

[
m p0

(
t

ts

)
− FT

MT + FT + K 2
M

c−
2,0

(
t

ts

)]
, (22)

Cun
1 = MT ET

MT + ET + K 1
M

(
Γ1,0

(
t

tc

)
+ c−

1,0

(
t

ts

)
− Φ−

)
,

Cun
2 = MT FT

MT + FT + K 2
M

c−
2,0

(
t

ts

)
.

4 Discussion

We have integrated numerically (3) and we have compared the results with our uniform
expansions. This is shown in Figs. 1, 2. In Fig. 1 our leading order approximations
describe very well the dynamics of the unmodified substrate M and its nearby complex
C1: in these cases, our expansions are made, as usual, of an inner part coupled with
an outer one. For what regards the modified complex Mp and its nearby complex C2
(see Fig. 2), our approximations are very good in catching the asymptotic values of
the reactants, while they are quite unsatisfactory in describing the initial dynamics,
even if the value of ε is extremely small, with our choice of kinetic parameters. This is
clearly due to the fact that in this latter case the inner expansions, at leading order, are
identically zero and therefore to have a better description of the very first dynamics
of these reactants we should better use first order asymptotics. Note also that the
time needed to reach a quasi-steady state, in this latter case, is much longer (about
one order of magnitude), but this probably depends from the fact that the Michaelis
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Fig. 1 Dynamics of M (left panel) and of C1 (right panel): full system (circles) and leading order approx-
imation (solid). Kinetic parameters as in Table 1, MT = 500, ET = 50, FT = 60

constant of reaction (2) is about one order of magnitude bigger than the one of (1).
Let us remark once again, by the way, that our expansions of Mp and C2 reproduce, at
leading order, the total quasi-steady state approximation, introduced in [1] and applied
to the Goldbeter–Koshland switch in [9].

Summarizing, in this work we have presented, for the very first time without any
assumption on the kinetic parameters, an asymptotic expansion for the covalent mod-
ification cycle, also known as Goldbeter–Koshland switch, in a total setting. We do
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Fig. 2 Dynamics of Mp (left panel) and of C2 (right panel): full system (circles) and leading order
approximation (solid). Kinetic parameters as in Table 1, MT = 500, ET = 50, FT = 60

Table 1 Kinetic parameters, resulting Michaelis constants and perturbation parameter of reaction (1–2)

k11 k−11 k12 k21 K 1
M K 2

M ε

0.02 1 0.01 0.032 50.5 500 1.7 × 10−7

think that this method can be generalized to biochemical networks of increasing com-
plexity. Another point to work on is the possibility to use first order asymptotic to have
better descriptions of the very first dynamics of all the reactants.
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